ON A CONJECTURE OF KEMNITZ

LAJOS RÓNYAI¹

Received August 23, 1999

A classic theorem of Erdős, Ginzburg and Ziv states that in a sequence of 2n-1 integers there is a subsequence of length n whose sum is divisble by n. This result has led to several extensions and generalizations. A multi-dimensional problem from this line of research is the following. Let Z_n stand for the additive group of integers modulo n. Let s(n,d) denote the smallest integer s such that in any sequence of s elements from Z_n^d (the direct sum of s copies of s denote the subsequence of length s whose sum is 0 in s definitely conjectured that s(n,2)=4n-3. In this note we prove that $s(n,2)\leq 4p-2$ holds for every prime s. This implies that the value of s(s,2) is either s definitely an arbitrary positive integer s it follows that $s(n,2)\leq (41/10)n$. The proof uses an algebraic approach.

1. Introduction

In 1961 Erdős, Ginzburg and Ziv [6] proved that in a sequence of 2n-1 integers there is a subsequence of length n whose sum is divisble by n. This result has led to several extensions and generalizations (see for example [2] and the survey paper [5]). A multi-dimensional problem from this line of research is to determine (estimate) the numbers s(n,d) defined as follows. Let Z_n denote the additive group of integers modulo n and s(n,d) be the smallest integer s such that in any sequence of s elements from Z_n^d (the direct sum of d copies of Z_n) there is a subsequence of length n whose sum

Mathematics Subject Classification (1991): 11B50, 11P21

 $^{^{1}}$ Research supported in part by grants OTKA 030132, 27569, NWO-OTKA 048.011.002, FKFP 0612/1997 and AKP 98-19.

is 0 in \mathbb{Z}_n^d . Harborth [7] proved that

(1)
$$(n-1)2^d + 1 \le s(n,d) \le (n-1)n^d + 1$$

and that the lower bound in (1) is attained if either d=1; or d=2 and n is of form $n=2^k3^l$. The inequalities in (1) are easy: in a sequence of $(n-1)n^d+1$ vectors form Z_n^d one must appear at least n times; as for the lower bound one can take a sequence consisting of n-1 copies of the 0,1-vectors from Z_n^d . Note that the Erdős-Ginzburg-Ziv Theorem can be formulated as s(n,1)=2n-1.

Alon and Dubiner [3] proved that $s(n,d) \le c(d)n$, where c(d) is a constant independent of n. Their proof uses expansion properties of Cayley graphs and additive number theory.

Kemnitz [8] conjectured that the lower bound is sharp for d=2, i.e. that s(n,2)=4n-3, and verified it in the cases when the prime factors of n are from the set $\{2,3,5,7\}$. In [2] Alon and Dubiner proved that $s(n,2) \le 6n-5$ and sketched an argument which gives $s(p,2) \le 5p-2$ for sufficiently large primes p.

The result of this note is the following.

Theorem 1.1. For every prime p we have $s(p,2) \le 4p-2$.

This, together with the lower bound in (1) implies that the value of s(p,2) is either 4p-3 or 4p-2. The proof is based on an algebraic technique developed mostly by Alon and his co-authors. In fact, our argument can be considered as an application of his beautiful Nonvanishing Theorem (Theorem 1.2 from [1]).

For an arbitrary positive integer n the theorem implies that $s(n,2) \le (41/10)n$. This is certainly true if n is prime or if the prime factors of n are all less than 11. For a general n one can proceed by induction on the number of primes dividing n: assume that n = mp, where $p \ge 11$ is a prime and $s(m,2) \le (41/10)m$. We use the inequality (cf. Harborth [7]) below:

$$s(mk,d) \le s(m,d) + m(s(k,d) - 1).$$

We obtain that

$$s(mp,2) \le \frac{41}{10}m + m(4p-3) = \frac{11}{10}m + 4mp \le \frac{mp}{10} + 4mp = \frac{41}{10}mp.$$

2. The proof

We need the following easy fact about polynomial functions on Boolean hypercubes, which has had many applications in combinatorics (see for example Section 5.4 of [4], or [2]). We include a simple proof for the reader's convenience.

Lemma 2.2. Let F be a field and m a positive integer. Then the (multilinear) monomials $\prod_{i \in I} x_i$, $I \subseteq \{1, 2, ..., m\}$ constitute a basis of the F-linear space of all functions from $\{0,1\}^m$ to F. (Here 0 and 1 are viewed as elements of F.)

Proof. The monomials $\prod_{i\in I} x_i$, $I\subseteq\{1,2,\ldots,m\}$ span a linear space of dimension 2^m over F. This is also the dimension of the space of functions from $\{0,1\}^m$ to F, therefore it suffices to verify that every function from the latter set can be expressed as an F-linear combination of the monomials $\prod_{i\in I} x_i$. The space of functions is clearly spanned by the characteristic functions χ_u , $u\in\{0,1\}^m$, where $\chi_u(u)=1$ and $\chi_u(v)=0$ if $v\neq u$, hence it is enough to establish the required representation for characteristic functions. Write $u=(u_1,u_2,\ldots,u_m)$ and let $U\subseteq\{1,2,\ldots,m\}$ be the set of coordinate positions j where $u_j=1$ and \overline{U} be the set of indices j with $u_j=0$. Then we have

$$\chi_u(x_1, x_2, \dots, x_m) = \prod_{j \in U} x_j \cdot \prod_{j \in \overline{U}} (1 - x_j)$$

as functions on $\{0,1\}^m$. By expanding the right hand side we obtain an expression of the desired form. This proves the assertion.

The following lemma was found by Alon and Dubiner ([2], Lemma 3.2). They proved it by using the Chevalley-Warning Theorem (see also the concluding remark).

Lemma 2.3. Let p be prime and

$$v_1, v_2, \ldots, v_{3p}$$

be a sequence of vectors from $Z_p \oplus Z_p$ such that $\sum_{i=1}^{3p} v_i = (0,0)$. Then there is a subset J of $\{1,2,\ldots,3p\}$, |J|=p such that $\sum_{j\in J} v_j = (0,0)$.

Proof of the Theorem. The assertion is obvious for p=2, hence we may assume that p is an odd prime. Put m=4p-2.

Let

$$v_1 = (a_1, b_1), v_2 = (a_2, b_2), \dots, v_m = (a_m, b_m)$$

be a sequence of vectors from $Z_p \oplus Z_p$. We have to prove that there exists a subset J of $\{1,2,\ldots,m\}$, |J|=p such that $\sum_{j\in J} v_j = (0,0)$.

Let $\sigma(x_1, x_2, ..., x_m) := \sum_{I \subset \{1, 2, ..., m\}, |I| = p} \prod_{i \in I} x_i$ denote the *p*-th elementary symmetric polynomial of the variables $x_1, x_2, ..., x_m$. By Lemma 2.3 it is enough to prove that there is a subset J of $\{1, 2, ..., m\}$, with |J| = p

or |J| = 3p such that $\sum_{j \in J} v_j = (0,0)$. Assume for contradiction that this statement is false and consider the polynomial P over the prime field F_p

$$P := \left(\left(\sum_{i=1}^{m} a_i x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^{m} b_i x_i \right)^{p-1} - 1 \right) \left(\left(\left(\sum_{i=1}^{m} x_i \right)^{p-1} - 1 \right) \left(\sigma(x_1, x_2, \dots, x_m) - 2 \right) \right)$$

We claim that F vanishes on all vectors $u \in \{0,1\}^m$, except on the all 0 vector $\mathbf{0}$, where $F(\mathbf{0}) = 2$. Indeed, the third factor vanishes on u unless it has Hamming weight (the number of ones) divisible by p. If the Hamming weight of u is 2p then $\sigma(u) = \binom{2p}{p} = 2$ in F_p , hence the last factor vanishes on u. Finally, if the Hamming weight of u is p or 3p then

$$\left(\left(\sum_{i=1}^{m} a_i x_i\right)^{p-1} - 1\right) \left(\left(\sum_{i=1}^{m} b_i x_i\right)^{p-1} - 1\right)$$

is 0 on u by the indirect hypothesis. We obtained that $P=2\chi_{\mathbf{0}}$ as functions on $\{0,1\}^m$. Note also that $\deg P \leq 3(p-1)+p=4p-3$. Now reduce P into a linear combination of multilinear monomials by using the relations $x_i^2=x_i$ (which are valid on $\{0,1\}^m$), and let Q denote the resulting expression. Clearly we have $Q=2\chi_{\mathbf{0}}$ as functions on $\{0,1\}^m$ and $\deg Q \leq 4p-3$, because reduction can not increase the degree. But this is in contradiction with the uniqueness part of Lemma 2.2, for the multilinear representative of $2\chi_{\mathbf{0}}=2(1-x_1)(1-x_2)\cdots(1-x_m)$ has degree m=4p-2. The contradiction establishes the Theorem.

Remark. Lemma 2.3 can be proved in a way similar to the preceding argument. Put m=3p, $v_i=(a_i,b_i)$ and just take the first three factors of P:

$$P' := \left(\left(\sum_{i=1}^{m} a_i x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^{m} b_i x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^{m} x_i \right)^{p-1} - 1 \right).$$

If the statement of the Lemma is false, then we can infer that $P' = -\chi_0 - \chi_1$ and this leads to contradiction (deg P' is too small), as before. This, however, is merely a reformulation with Boolean variables of the original reasoning of Alon and Dubiner [2]. They employed variables ranging over F_p .

Acknowledgement. I thank Imre Z. Ruzsa for pointing out to me that Theorem 1.1 implies the general bound $s(n,2) \le (41/10)n$.

References

- N. Alon: Combinatorial Nullstellensatz, Combinatorics, Probability and Computing, 8 (1999), 7–29.
- [2] N. Alon, M. Dubiner: Zero-sum sets of prescribed size, *Combinatorics, Paul Erdős is Eighty*, János Bolyai Math. Soc., Budapest, 1993, 33–50.
- [3] N. Alon, M. Dubiner: A lattice point problem and additive number theory, Combinatorica, 15 (1995), 301–309.
- [4] L. Babai, P. Frankl: Linear algebra methods in combinatorics, manuscript, September 1992.
- [5] Y. Caro: Zero-sum problems a survey, Discrete Mathematics, 152 (1996), 93–113.
- [6] P. Erdős, A. Ginzburg, A. Ziv: Theorem in the additive number theory, *Bull. Research Council Israel*, **10F** (1961), 41–43.
- [7] H. HARBORTH: Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math., 262/263 (1973), 356–360.
- [8] A. Kemnitz: On a lattice point problem, Ars Combinatoria, 16b, (1983) 151–160.

Lajos Rónyai

Computer and Automation Institute, Hungarian Academy of Sciences Budapest, Hungary

lajos@nyest.ilab.sztaki.hu